Dimension bounds on sutured instanton homology

Fan Ye

University of Cambridge

Joint work with John A. Baldwin and Zhenkun Li

Fan Ye (Cambridge)

Dimension bounds on SHI

21 1/37

For a balanced sutured manifold (M,γ) , one can define

- sutured (Heegaard) Floer homology SFH(M, γ) by Juhász '06, a Z-module or an F₂-vector space, whose chain complex is SFC(M, γ);
- sutured monopole homology $SHM(M, \gamma)$ by Kronheimer-Mrowka '10, a \mathbb{Z} -module or a module of the Novikov ring over \mathbb{Z}_2 ;
- sutured instanton homology $SHI(M,\gamma)$ by Kronheimer-Mrowka '10, a $\mathbb{C}\text{-vector space.}$

We prove

- $\dim_{\mathbb{C}} SHI(M,\gamma) \leq \dim_{\mathbb{F}_2} SFC(M,\gamma)$ (Baldwin-Li-Y. '20);
- $\chi_{\rm gr}(SHI(M,\gamma)) = \chi_{\rm gr}(SFH(M,\gamma))$ (Li-Y. '21);
- similar results for $SHM(M, \gamma)$.

(1) Construction of SFH

(2) Constructions of SHM and SHI

3 Motivation

5 Sketch of proofs

(1) Construction of SFH

2) Constructions of SHM and SHI

3 Motivation

- 4 Main theorem
- 5 Sketch of proofs

Definition (Gabai '83, Juhász '06)

A balanced sutured manifold (M, γ) consists of a compact oriented 3-manifold M with non-empty boundary together with an oriented closed 1-submanifold γ on ∂M , which satisfies the following conditions.

- $R(\gamma) = \partial M \setminus int(N(\gamma))$. Neither M nor $R(\gamma)$ has a closed component.
- $R(\gamma) = R_+(\gamma) \sqcup R_-(\gamma)$, where the orientations induced by ∂M and γ are the same on $R_+(\gamma)$, but different on $R_-(\gamma)$.
- (Balanced condition) $\chi(R_+(\gamma)) = \chi(R_-(\gamma)).$

Examples of balanced sutured manifolds

- (B^3, δ) , where $\delta \subset \partial B^3$ is an oriented circle.
- $(Y \mathrm{int}B^3, \delta)$, where Y is a connected closed 3-manifold.
- $(Y \operatorname{int} N(K), m \cup (-m))$, where K is a knot and m is a meridian of K.

${\rm Construction}~{\rm of}~SFH$

Definition (Juhász '06)

A balanced diagram $\mathcal{H} = (\Sigma, \alpha, \beta)$ is a tuple satisfying the following.

- $\bullet~\Sigma$ is a compact, oriented surface with boundary.
- $\alpha = \{\alpha_1, \ldots, \alpha_n\}$ and $\beta = \{\beta_1, \ldots, \beta_n\}$ are two sets of pairwise disjoint simple closed curves in the interior of Σ .
- The maps $\pi_0(\partial \Sigma) \to \pi_0(\Sigma \setminus \alpha)$ and $\pi_0(\partial \Sigma) \to \pi_0(\Sigma \setminus \beta)$ are surjective.

From a balanced diagram, we can construct a sutured manifold as follows.

Construction of SFH

Suppose $\mathcal{H} = (\Sigma, \alpha, \beta)$ is an (admissible) balanced diagram with $n = |\alpha| = |\beta|$. Consider two tori

$$\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_n \text{ and } \mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_n$$

in the symmetric product

$$\operatorname{Sym}^n \Sigma = (\prod_{i=1}^n \Sigma)/S_n$$
, where S_n is the symmetric group.

The chain complex $SFC(\mathcal{H})$ is a \mathbb{Z} -module generated by intersection points $\boldsymbol{x} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, *i.e.*

$$\boldsymbol{x} = x_1 \times \cdots \times x_n$$
 for $x_i \in \alpha_i \cap \beta_{\sigma(i)}, \sigma \in S_n$.

Construction of SFH

Roughly speaking, $\operatorname{Sym}^{n}\Sigma$ is a symplectic manifold and $\mathbb{T}_{\alpha}, \mathbb{T}_{\beta}$ are Lagrangian submanifolds. Let $SFH(\mathcal{H})$ be the Lagrangian Floer homology of \mathbb{T}_{α} and \mathbb{T}_{β} .

Theorem (Juhász '06)

For a balanced sutured manifold (M, γ) , different choices of the balanced diagram \mathcal{H} induce isomorphic \mathbb{Z} -modules $SFH(\mathcal{H})$, denoted by $SFH(M, \gamma)$.

Remark

Juhász-Thurston-Zemke '12 proved the naturality of $SFH(M, \gamma)$ over \mathbb{F}_2 .

Remark

$$SFH(Y - \operatorname{int} B^3, \delta) \cong \widehat{HF}(Y),$$

$$SFH(Y - \operatorname{int} N(K), m \cup (-m)) \cong \widehat{HFK}(Y, K).$$

 $SFH(M,\gamma)$ admits a ${\rm spin}^c$ decomposition

$$SFH(M,\gamma) = \bigoplus_{\mathfrak{s}\in \mathrm{Spin}^{c}(M,\gamma)} SFH(M,\gamma,\mathfrak{s}),$$

where $\operatorname{Spin}^{c}(M,\gamma)$ is an affine space over $H^{2}(M,\partial M;\mathbb{Z}) \cong H_{1}(M;\mathbb{Z}) = H'$.

There is also a relative \mathbb{Z}_2 -grading on $SFH(M, \gamma, \mathfrak{s})$. Fix $\mathfrak{s}_0 \in \operatorname{Spin}^c(M, \gamma)$.

$$\chi(SFH(M,\gamma)) = \sum_{\substack{\mathfrak{s}\in \mathrm{Spin}^{c}(M,\gamma)\\\mathfrak{s}-\mathfrak{s}_{0}=h\in H^{2}(M,\partial M;\mathbb{Z})}} \chi(SFH(M,\gamma,\mathfrak{s})) \cdot \mathrm{PD}(h) \in \mathbb{Z}[H']/\pm H',$$

where $PD: H^2(M, \partial M; \mathbb{Z}) \to H_1(M; \mathbb{Z})$ is the Poincaré duality map.

Theorem (Friedl-Juhász-Rasmussen '11)

Suppose $H' = H_1(M; \mathbb{Z})$. We have

$$\chi(SFH(M,\gamma)) = \tau(M,\gamma) \in \mathbb{Z}[H']/\pm H',$$

where $\tau(M,\gamma)$ is a Turaev-type torsion and can be calculated by Fox calculus.

Remark

Later, we will consider

$$\chi_{\rm gr}(SFH(M,\gamma)) = p_*(\chi(SFH(M,\gamma))) \in \mathbb{Z}[H]/\pm H,$$

where p_* is induced by $p: H_1(M; \mathbb{Z}) \to H_1(M; \mathbb{Z})/\text{Tors} = H$.

1) Construction of SFH

(2) Constructions of SHM and SHI

3 Motivation

4 Main theorem

5 Sketch of proofs

Suppose Y is a closed 3-manifold. Based on Seiberg-Witten equations, Kronheimer-Mrowka '07 constructed three versions of monopole Floer homology

$$\widehat{HM}_{\bullet}(Y)$$
 (from), $\widecheck{HM}_{\bullet}(Y)$ (to), $\overline{HM}_{\bullet}(Y)$ (bar).

They admit a spin^c decomposition over $\operatorname{Spin}^{c}(Y)$. For any $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$ with $c_{1}(\mathfrak{s})$ nontorsion, Kronheimer-Mrowka showed that

$$\overline{HM}_{\bullet}(Y,\mathfrak{s})=0 \ \text{ and } \ \widehat{HM}_{\bullet}(Y,\mathfrak{s})\cong \widecheck{HM}_{\bullet}(Y,\mathfrak{s}).$$

For a closed surface $R \subset Y$ with $g(R) \ge 2$, define

$$HM(Y|R) = \bigoplus_{\substack{\mathfrak{s}\in \mathrm{Spin}^{c}(Y)\\\langle c_{1}(\mathfrak{s}), R \rangle = 2g(R) - 2}} \widecheck{HM}_{\bullet}(Y, \mathfrak{s})$$

Suppose Y is a closed 3-manifold and $\omega \to Y$ is a Hermitian line bundle such that $c_1(\omega)$ has odd pairing with some integer homology class. Based on Yang-Mills equations (related to SO(3) connections), Floer '88 constructed a well-defined instanton homology group $I^{\omega}(Y)$.

For any homology class h in $H_*(Y)$, there is an action $\mu(h)$ on $I^{\omega}(Y)$. In particular, for a point pt and a closed surface R in Y, there are actions $\mu(\text{pt})$ and $\mu(R)$, which commute with each other. Define

 $I^{\omega}(Y|R)$

to be the simultaneous (generalized) eigenspace of $(\mu(pt), \mu(R))$ with eigenvalues

(2, 2g(R) - 2).

Definition (Kronheimer-Mrowka '10)

Suppose (M, γ) is a balanced sutured manifold. Let T be a connected compact surface with $\#\partial T = \#\gamma$. Let the **preclosure** \widetilde{M} of (M, γ) be

$$\widetilde{M} = M \underset{\gamma = -\partial T}{\cup} [-1, 1] \times T.$$

The boundary of \widetilde{M} consists of two components

$$\widetilde{R}_+ = R_+(\gamma) \cup \{1\} imes T$$
 and $\widetilde{R}_- = R_-(\gamma) \cup \{-1\} imes T.$

Let $h: \widetilde{R}_+ \cong \widetilde{R}_-$ be a diffeomorphism which reverses the boundary orientations. Let Y be the 3-manifold obtained from \widetilde{M} by gluing \widetilde{R}_+ to \widetilde{R}_- by h and let R be the image of \widetilde{R}_+ and \widetilde{R}_- in Y. The pair (Y, R) is called a **closure** of (M, γ) . The genus of R is called the **genus** of the closure (Y, R).

Fan Ye (Cambridge)

Constructions of SHM and SHI

A closure (Y, R) of (M, γ) .

э

- (E

Definition (Kronheimer-Mrowka '10)

Suppose (Y, R) is a closure of (M, γ) with $g(R) \ge 2$. Define

 $SHM(M, \gamma) = HM(Y|R).$

Definition (Kronheimer-Mrowka '10)

In the construction of the closure, suppose p is a point on T and the diffeomorphism h sends $\{1\}\times p$ to $\{-1\}\times p$. Let ω be the Hermitian line bundle such that $c_1(\omega)$ is Poincaré dual to $[-1,1]\times p/\sim_h$. For such a closure (Y,R,ω) with $g(R) \geqslant 1$, define

$$SHI(M,\gamma) = I^{\omega}(Y|R).$$

Theorem (Kronheimer-Mrowka '10)

The isomorphism classes of $SHM(M, \gamma)$ and $SHI(M, \gamma)$ are independent of the choices of the surface T, the diffeomorphism h, and the point p.

Remark

Baldwin-Sivek '15 proved the naturality of $SHM(M,\gamma)$ and $SHI(M,\gamma)$.

Remark

$$SHM(Y - \operatorname{int} B^3, \delta) \cong \widetilde{HM}(Y)$$
 and $SHI(Y - \operatorname{int} B^3, \delta) \cong I^{\sharp}(Y).$

Define

$$\begin{aligned} KHM(Y,K) &= SHM(Y - \operatorname{int} N(K), m \cup (-m)), \\ KHI(Y,K) &= SHI(Y - \operatorname{int} N(K), m \cup (-m)). \end{aligned}$$

Fan Ye (Cambridge)

For a basis S_1, \ldots, S_n of $H_2(M, \partial M)$, Li '19, Ghosh-Li '19 constructed a \mathbb{Z}^n -grading on $SHM(M, \gamma)$ and $SHI(M, \gamma)$. Suppose

 $\rho_1, \ldots, \rho_n \in H^2(H, \partial M) / \text{Tors}$

are the dual basis of S_1,\ldots,S_n . Define $\chi_{\operatorname{gr}}(SHM(M,\gamma))$ to be

$$\sum_{i_1,\ldots,i_n\in\mathbb{Z}^n}\chi(SHM(M,\gamma,(S_1,\ldots,S_n),(i_1,\ldots,i_n)))\cdot(\rho_1^{i_1}\cdots\rho_n^{i_n}).$$

It is a well-defined element in $\mathbb{Z}[H]/\pm H,$ where

$$H = H_1(M)/\text{Tors} \cong H^2(M, \partial M)/\text{Tors}.$$

Define $\chi_{\rm gr}(SHI(M,\gamma))$ similarly.

Theorem A (Baldwin-Li-Y. '20)

Suppose (M,γ) is a balanced sutured manifold and ${\cal H}$ is an (admissible) balanced diagram of $(M,\gamma).$ Then we have

$$\dim_{\mathbb{C}} SHI(M,\gamma) \leq \dim_{\mathbb{F}_2} SFC(\mathcal{H}).$$

Theorem B (Li-Y. '21)

Suppose (M, γ) is a balanced sutured manifold and $H = H_1(M; \mathbb{Z})/\text{Tors.}$ Then

$$\chi_{\mathrm{gr}}(SHI(M,\gamma)) = \chi_{\mathrm{gr}}(SFH(M,\gamma)) \in \mathbb{Z}[H]/\pm H.$$

Remark

- $\bullet\,$ Li-Y. '20 proved Theorem A for (1,1) diagrams of knots in lens spaces.
- In preparation (Li-Y.): Theorem B can be proved for $H' = H_1(M; \mathbb{Z})$.

1) Construction of SFH

2) Constructions of SHM and SHI

3 Motivation

5 Sketch of proofs

Motivation

Conjecture (Kronheimer-Mrowka '10)

Suppose (M, γ) is a balanced sutured manifold and Λ is the Novikov ring over \mathbb{Z}_2 .

 $SHM(M,\gamma) \cong SFH(M,\gamma) \otimes \Lambda, SHI(M,\gamma) \cong SFH(M,\gamma) \otimes \mathbb{C}.$

Theorem (Lekili '13, Baldwin-Sivek '16)

The above conjecture holds for SHM.

Remark

The proof is based on the isomorphisms for closed 3-manifold \boldsymbol{Y}

$$\widetilde{HM}_{\bullet}(Y) \cong ECH(-Y) \cong HF^+(Y)$$

by Kutluhan-Lee-Taubes '12 or Colin-Ghiggini-Honda '12 and Taubes '10.

Facts

- (Kronheimer-Mrowka '11) For a knot $K \subset S^3$, there is a spectral sequence from the reduced Khovanov homology $Khr(\bar{K})$ to $KHI(S^3, K)$, where \bar{K} is the mirror of K.
- (Lim '09, Kronheimer-Mrowka '10) For a link $L \subset S^3$, we have $\chi_{\rm gr}(KHI(S^3,K)) = \Delta_L(t)$, where $\Delta_L(t)$ is the (single-variable) Alexander polynomial of L.
- (Scaduto '15) For a link $L \subset S^3$, there is a spectral squence from the reduced odd Khovanov homology $Khr'(\bar{L})$ to $I^{\sharp}(\Sigma(L))$, where $\Sigma(L)$ is the double branched cover of S^3 over L.
- (Scaduto '15) For any closed 3-manifold Y, we have $\chi(I^{\sharp}(Y)) = |H_1(Y;\mathbb{Z})|$.

Facts

The conjecture $SHI(M,\gamma)\cong SFH(M,\gamma)\otimes \mathbb{C}$ holds for

- S^3 , lens spaces, $S^1 imes S^2$, and other simple manifolds by direct calculations;
- alternating links in S^3 (by spectral sequence and the alexander polynomial);
- double branched covers of S^3 over alternating links L (similar as above);
- some torus knots (Lobb-Zentner '13, Kronheimer-Mrowka '14, Hedden-Herald-Kirk '14, Daemi-Scaduto '19, et al.)
- some closed 3-manifolds obtained by surgeries on knots in S^3 (Lidman-Pinzón-Scaduto '20, Baldwin-Sivek '20, *et al.*).

1) Construction of SFH

2) Constructions of SHM and SHI

3 Motivation

5 Sketch of proofs

Theorem A (Baldwin-Li-Y. '20)

Suppose (M,γ) is a balanced sutured manifold and ${\cal H}$ is an (admissible) balanced diagram of $(M,\gamma).$ Then we have

$$\dim_{\mathbb{C}} SHI(M,\gamma) \leq \dim_{\mathbb{F}_2} SFC(\mathcal{H}).$$

Theorem B (Li-Y. '21)

Suppose (M, γ) is a balanced sutured manifold and $H = H_1(M; \mathbb{Z})/\mathrm{Tors}$. Then

$$\chi_{\mathrm{gr}}(SHI(M,\gamma)) = \chi_{\mathrm{gr}}(SFH(M,\gamma)) \in \mathbb{Z}[H]/\pm H.$$

Remark

- $\bullet\,$ Li-Y. '20 proved Theorem A for (1,1) diagrams of knots in lens spaces.
- In preparation (Li-Y.): Theorem B can be proved for $H = H_1(M; \mathbb{Z})$.

Main theorem

For a balanced diagram \mathcal{H} , the generator of $SFC(\mathcal{H})$ can be calculated \implies Theorem A provides an upper bound on $\dim_{\mathbb{C}} SHI(M, \gamma)$.

For a balanced sutured manifold (M, γ) , $\chi_{\rm gr}(SFH(M, \gamma))$ can be calculated by Fox calculus \implies Theorem B provides a lower bound on $\dim_{\mathbb{C}} SHI(M, \gamma)$.

When two bounds match, we have the following corollary.

Corollary

The conjecture $SHI(M,\gamma) \cong SFH(M,\gamma) \otimes \mathbb{C}$ holds for

- (1,1)-knots in lens spaces whose Alexander polynomials determine \widehat{HFK} , in particular, all torus knots, constrained knots (introduced by Y. 20), and (-2, p, q)-pretzel knots for $p, q \in 2\mathbb{N} + 1$;
- strong L-space (introduced by Greene-Levine '16), for which there exists a balanced diagram \mathcal{H} such that $\dim_{\mathbb{F}_2} SFC(\mathcal{H}) = \dim_{\mathbb{F}_2} SFH(M, \gamma)$.

1 Construction of SFH

${f 2}$ Constructions of SHM and SHI

3 Motivation

5 Sketch of proofs

Sketch of proofs: Theorem A

The proof of Theorem A is based on the following proposition.

Proposition A1 (Li-Y. '20 for one component, Baldwin-Li-Y. '20 for any case)

Suppose T is a properly embedded tangle in (M, γ) such that each component of T intersects each of $R_+(\gamma)$ and $R_-(\gamma)$ once. Suppose $M_T = M - \operatorname{int} N(T)$ and $\gamma_T = \gamma \cup m_T$, where m_T is the union of meridians of each component of T. If $[T] = 0 \in H_1(M, \partial M; \mathbb{Z})$, then

$$\dim_{\mathbb{C}} SHI(M,\gamma) \leq \dim_{\mathbb{C}} SHI(M_T,\gamma_T).$$

Remark

If $(M, \gamma) = (Y - \operatorname{int} B^3, S^1)$, then $(M_T, \gamma_T) = (Y - \operatorname{int} N(K), m \cup (-m))$ for some knot $K \subset Y$, where $[K] = 0 \in H_1(Y; \mathbb{Q})$. Then we have

 $\dim_{\mathbb{C}} I^{\sharp}(Y) \leqslant \dim_{\mathbb{C}} KHI(Y, K).$

Fan Ye (Cambridge)

For a given (admissible) balanced diagram $\mathcal{H} = (\Sigma, \alpha, \beta)$ of (M, γ) , we want to construct a tangle T satisfying the assumption of Proposition A1 and

$$\dim_{\mathbb{C}} SHI(M_T, \gamma_T) = \dim_{\mathbb{F}_2} SFC(\mathcal{H})$$

For simplicity, suppose $H_1(M, \partial M; \mathbb{Q}) = 0$, then we always have [T] = 0 and there is no admissible condition on \mathcal{H} .

Choose a point p_i in each component of $\Sigma \setminus \alpha \cup \beta$ that is disjoint from $\partial \Sigma$. Set

$$T = \bigcup_{i} [-1, 1] \times p_i \subset [-1, 1] \times \Sigma \subset M.$$

Fan Ye (Cambridge)

Proposition A2 (Baldwin-Li-Y. '20)

Suppose $H_1(M, \partial M; \mathbb{Q}) = 0$. For above choice of T, we have

 $\dim_{\mathbb{C}} SHI(M_T, \gamma_T) = \dim_{\mathbb{F}_2} SFC(\mathcal{H})$

Proposition A3 (Baldwin-Li-Y. '20)

Suppose $D \subset M$ is a properly embedded disk with $|\partial D \cap \gamma| = 4$. Then

 $SHI(M,\gamma) \cong SHI(M',\gamma') \oplus SHI(M'',\gamma''),$

where (M',γ') and (M'',γ'') are the decompositions of (M,γ) along D and -D, respectively.

Sketch of proofs: Theorem A

Fan Ye (Cambridge)

Dimension bounds on SHI

2021 31/3

Sketch of proofs: Theorem B

The proof of Theorem B is based on the following proposition.

Proposition B1 (Lekili '13, Baldwin-Sivek '16)

Suppose (Y, R) is a closure of (M, γ) . Define

$$SHF(M,\gamma) = HF(Y|R) = \bigoplus_{\substack{\mathfrak{s}\in \mathrm{Spin}^{c}(Y)\\\langle c_{1}(\mathfrak{s}), R \rangle = 2g(R) - 2}} HF^{+}(Y,\mathfrak{s}),$$

where HF^+ is the plus version of Heegaard Floer homology defined by Oszváth-Szabó '04. Then we have

$$SHF(M,\gamma) \cong SFH(M,\gamma).$$

Moreover, the isomorphism respects (nontorsion) spin^c structures and \mathbb{Z}_2 -gradings.

By Proposition B1, we only need to prove

$$\chi_{\rm gr}(SHI(M,\gamma)) = \chi_{\rm gr}(SHF(M,\gamma)),$$

where both spaces are defined by closures. In particular, we can choose the same closure (Y, R) and the same surfaces S_1, \ldots, S_n to induce the \mathbb{Z}^n -grading. Suppose

$$\cdots \to X \to Y \to Z \to X[1] \to \ldots$$

is a long exact sequence, then there is a choice of signs such that

$$\chi(X) = \pm \chi(Y) \pm \chi(Z).$$

There are two long exact sequences we use, namely the surgery exact triangle and the bypass exact triangle.

Proposition B2 (surgery exact triangle, Floer '90)

Suppose K is a knot in M. Let (M_i, γ_i) be obtained from (M, γ) by Dehn surgery along K with slope μ_i . If

$$\mu_1 \cdot \mu_2 = \mu_2 \cdot \mu_3 = \mu_3 \cdot \mu_1 = -1,$$

then there exists a long exact sequence

 $\cdots \to SHI(M_1, \gamma_1) \to SHI(M_2, \gamma_2) \to SHI(M_3, \gamma_3) \to SHI(M_1, \gamma_1)[1] \to \cdots$

Proposition B2 (bypass exact triangle, Baldwin-Sivek '18)

Suppose $\gamma_1, \gamma_2, \gamma_3$ are three sutures on M such that γ_i are the same except in a disk, where they look like as follows. Then there exists a long exact sequence

 $\cdots \to SHI(M,\gamma_1) \to SHI(M,\gamma_2) \to SHI(M,\gamma_3) \to SHI(M,\gamma_1)[1] \to$

Then we prove Theorem B by induction.

• The base case is $(M, \gamma) = (B^3, S^1)$, for which

 $\dim_{\mathbb{C}} SHI(M,\gamma) = \dim_{\mathbb{F}_2} SHF(M,\gamma) = 1;$

- In the case where M is a handlebody, we use the bypass exact triangle to make γ simper and then use the decomposition theorem (e.g. Proposition A3) to decrease the genus of the handlebody.
- \bullet In the general case, we use the surgery exact triangle to reduce (M,γ) to a sutured handlebody.

Dimension bounds on sutured instanton homology

Thanks for your attention.