Dimension bounds on sutured instanton homology

Fan Ye
University of Cambridge

Joint work with John A. Baldwin and Zhenkun Li

Sketch

For a balanced sutured manifold (M, γ), one can define

- sutured (Heegaard) Floer homology $\operatorname{SFH}(M, \gamma)$ by Juhász '06, a Z-module or an \mathbb{F}_{2}-vector space, whose chain complex is $\operatorname{SFC}(M, \gamma)$;
- sutured monopole homology $S H M(M, \gamma)$ by Kronheimer-Mrowka '10, a \mathbb{Z}-module or a module of the Novikov ring over \mathbb{Z}_{2};
- sutured instanton homology $\operatorname{SHI}(M, \gamma)$ by Kronheimer-Mrowka '10, a \mathbb{C}-vector space.
We prove
- $\operatorname{dim}_{\mathbb{C}} S H I(M, \gamma) \leqslant \operatorname{dim}_{\mathbb{F}_{2}} S F C(M, \gamma)$ (Baldwin-Li-Y. '20);
- $\chi_{\mathrm{gr}}(S H I(M, \gamma))=\chi_{\mathrm{gr}}(S F H(M, \gamma))\left(\mathrm{Li}-\mathrm{Y} .{ }^{\prime} 21\right)$;
- similar results for $\operatorname{SHM}(M, \gamma)$.

Table of Contents

(1) Construction of SFH
(2) Constructions of $S H M$ and $S H I$
(3) Motivation
(4) Main theorem
(5) Sketch of proofs

Table of Contents

(1) Construction of SFH
(2) Constructions of $S H M$ and $S H I$
(3) Motivation
4) Main theorem
(5) Sketch of proofs

Construction of $S F H$

Definition (Gabai '83, Juhász '06)

A balanced sutured manifold (M, γ) consists of a compact oriented 3-manifold M with non-empty boundary together with an oriented closed 1-submanifold γ on ∂M, which satisfies the following conditions.

- $R(\gamma)=\partial M \backslash \operatorname{int}(N(\gamma))$. Neither M nor $R(\gamma)$ has a closed component.
- $R(\gamma)=R_{+}(\gamma) \sqcup R_{-}(\gamma)$, where the orientations induced by ∂M and γ are the same on $R_{+}(\gamma)$, but different on $R_{-}(\gamma)$.
- (Balanced condition) $\chi\left(R_{+}(\gamma)\right)=\chi\left(R_{-}(\gamma)\right)$.

Examples of balanced sutured manifolds

- $\left(B^{3}, \delta\right)$, where $\delta \subset \partial B^{3}$ is an oriented circle.
- $\left(Y-\operatorname{int} B^{3}, \delta\right)$, where Y is a connected closed 3-manifold.
- ($Y-\operatorname{int} N(K), m \cup(-m)$), where K is a knot and m is a meridian of K.

Construction of $S F H$

Definition (Juhász '06)

A balanced diagram $\mathcal{H}=(\Sigma, \alpha, \beta)$ is a tuple satisfying the following.

- Σ is a compact, oriented surface with boundary.
- $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are two sets of pairwise disjoint simple closed curves in the interior of Σ.
- The maps $\pi_{0}(\partial \Sigma) \rightarrow \pi_{0}(\Sigma \backslash \alpha)$ and $\pi_{0}(\partial \Sigma) \rightarrow \pi_{0}(\Sigma \backslash \beta)$ are surjective.

From a balanced diagram, we can construct a sutured manifold as follows.

Construction of $S F H$

Suppose $\mathcal{H}=(\Sigma, \alpha, \beta)$ is an (admissible) balanced diagram with $n=|\alpha|=|\beta|$. Consider two tori

$$
\mathbb{T}_{\alpha}=\alpha_{1} \times \cdots \times \alpha_{n} \text { and } \mathbb{T}_{\beta}=\beta_{1} \times \cdots \times \beta_{n}
$$

in the symmetric product

$$
\operatorname{Sym}^{n} \Sigma=\left(\prod_{i=1}^{n} \Sigma\right) / S_{n}, \text { where } S_{n} \text { is the symmetric group. }
$$

The chain complex $\operatorname{SFC}(\mathcal{H})$ is a \mathbb{Z}-module generated by intersection points $\boldsymbol{x} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, i.e.

$$
\boldsymbol{x}=x_{1} \times \cdots \times x_{n} \text { for } x_{i} \in \alpha_{i} \cap \beta_{\sigma(i)}, \sigma \in S_{n}
$$

Construction of $S F H$

Roughly speaking, $\operatorname{Sym}^{n} \Sigma$ is a symplectic manifold and $\mathbb{T}_{\alpha}, \mathbb{T}_{\beta}$ are Lagrangian submanifolds. Let $S F H(\mathcal{H})$ be the Lagrangian Floer homology of \mathbb{T}_{α} and \mathbb{T}_{β}.

Theorem (Juhász '06)

For a balanced sutured manifold (M, γ), different choices of the balanced diagram \mathcal{H} induce isomorphic \mathbb{Z}-modules $S F H(\mathcal{H})$, denoted by $\operatorname{SFH}(M, \gamma)$.

Remark

Juhász-Thurston-Zemke '12 proved the naturality of $\operatorname{SFH}(M, \gamma)$ over \mathbb{F}_{2}.
Remark

$$
\begin{aligned}
S F H\left(Y-\operatorname{int} B^{3}, \delta\right) & \cong \widehat{H F}(Y), \\
S F H(Y-\operatorname{int} N(K), m \cup(-m)) & \cong \widehat{H F K}(Y, K) .
\end{aligned}
$$

Construction of $S F H$

SFH (M, γ) admits a spin c decomposition

$$
S F H(M, \gamma)=\bigoplus_{\mathfrak{s} \in \operatorname{Sin}^{c}(M, \gamma)} \operatorname{SFH}(M, \gamma, \mathfrak{s}),
$$

where $\operatorname{Spin}^{c}(M, \gamma)$ is an affine space over $H^{2}(M, \partial M ; \mathbb{Z}) \cong H_{1}(M ; \mathbb{Z})=H^{\prime}$.
There is also a relative \mathbb{Z}_{2}-grading on $\operatorname{SFH}(M, \gamma, \mathfrak{s})$. Fix $\mathfrak{s}_{0} \in \operatorname{Spin}^{c}(M, \gamma)$.

$$
\chi(S F H(M, \gamma))=\sum_{\substack{\mathfrak{s} \in \operatorname{Sinin}^{c}(M, \gamma) \\ \mathfrak{s}-\mathfrak{s}_{0}=h \in H^{2}(M, \partial M ; \mathbb{Z})}} \chi(S F H(M, \gamma, \mathfrak{s})) \cdot \operatorname{PD}(h) \in \mathbb{Z}\left[H^{\prime}\right] / \pm H^{\prime},
$$

where $\mathrm{PD}: H^{2}(M, \partial M ; \mathbb{Z}) \rightarrow H_{1}(M ; \mathbb{Z})$ is the Poincaré duality map.

Construction of $S F H$

Theorem (Friedl-Juhász-Rasmussen '11)

Suppose $H^{\prime}=H_{1}(M ; \mathbb{Z})$. We have

$$
\chi(S F H(M, \gamma))=\tau(M, \gamma) \in \mathbb{Z}\left[H^{\prime}\right] / \pm H^{\prime}
$$

where $\tau(M, \gamma)$ is a Turaev-type torsion and can be calculated by Fox calculus.

Remark

Later, we will consider

$$
\chi_{\mathrm{gr}}(S F H(M, \gamma))=p_{*}(\chi(S F H(M, \gamma))) \in \mathbb{Z}[H] / \pm H
$$

where p_{*} is induced by $p: H_{1}(M ; \mathbb{Z}) \rightarrow H_{1}(M ; \mathbb{Z}) /$ Tors $=H$.

Table of Contents

(1) Construction of $S F H$

(2) Constructions of $S H M$ and $S H I$
(3) Motivation
4) Main theorem
(5) Sketch of proofs

Constructions of $S H M$ and $S H I$

Suppose Y is a closed 3-manifold. Based on Seiberg-Witten equations, Kronheimer-Mrowka '07 constructed three versions of monopole Floer homology

$$
\widehat{H M}_{\bullet}(Y)(\text { from }), \widetilde{H M}_{\bullet}(Y) \text { (to) }, \overline{H M}_{\bullet}(Y) \text { (bar). }
$$

They admit a spin^{c} decomposition over $\operatorname{Spin}^{c}(Y)$. For any $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$ with $c_{1}(\mathfrak{s})$ nontorsion, Kronheimer-Mrowka showed that

$$
\overline{H M} \cdot(Y, \mathfrak{s})=0 \text { and } \widehat{H M} \cdot(Y, \mathfrak{s}) \cong \overline{H M} \cdot(Y, \mathfrak{s})
$$

For a closed surface $R \subset Y$ with $g(R) \geqslant 2$, define

$$
\left.H M(Y \mid R)=\underset{\substack{\mathfrak{s} \in \operatorname{Spin}^{c}(Y) \\\left\langle c_{1}(\mathfrak{s}), R\right\rangle=2 g(R)-2}}{\bigoplus_{H M}^{\bullet}} \mid Y, \mathfrak{s}\right)
$$

Constructions of $S H M$ and $S H I$

Suppose Y is a closed 3-manifold and $\omega \rightarrow Y$ is a Hermitian line bundle such that $c_{1}(\omega)$ has odd pairing with some integer homology class. Based on Yang-Mills equations (related to $S O(3)$ connections), Floer '88 constructed a well-defined instanton homology group $I^{\omega}(Y)$.

For any homology class h in $H_{*}(Y)$, there is an action $\mu(h)$ on $I^{\omega}(Y)$. In particular, for a point pt and a closed surface R in Y, there are actions $\mu(\mathrm{pt})$ and $\mu(R)$, which commute with each other. Define

$$
I^{\omega}(Y \mid R)
$$

to be the simultaneous (generalized) eigenspace of $(\mu(\mathrm{pt}), \mu(R))$ with eigenvalues

$$
(2,2 g(R)-2)
$$

Constructions of $S H M$ and $S H I$

Definition (Kronheimer-Mrowka '10)

Suppose (M, γ) is a balanced sutured manifold. Let T be a connected compact surface with $\# \partial T=\# \gamma$. Let the preclosure \widetilde{M} of (M, γ) be

$$
\widetilde{M}=M \underset{\gamma=-\partial T}{\cup}[-1,1] \times T .
$$

The boundary of \widetilde{M} consists of two components

$$
\widetilde{R}_{+}=R_{+}(\gamma) \cup\{1\} \times T \text { and } \widetilde{R}_{-}=R_{-}(\gamma) \cup\{-1\} \times T .
$$

Let $h: \widetilde{R}_{+} \cong \widetilde{R}_{-}$be a diffeomorphism which reverses the boundary orientations. Let Y be the 3-manifold obtained from \widetilde{M} by gluing \widetilde{R}_{+}to \widetilde{R}_{-}by h and let R be the image of \widetilde{R}_{+}and \widetilde{R}_{-}in Y. The pair (Y, R) is called a closure of (M, γ). The genus of R is called the genus of the closure (Y, R).

Constructions of $S H M$ and $S H I$

A closure (Y, R) of (M, γ).

Constructions of $S H M$ and $S H I$

Definition (Kronheimer-Mrowka '10)

Suppose (Y, R) is a closure of (M, γ) with $g(R) \geqslant 2$. Define

$$
S H M(M, \gamma)=H M(Y \mid R) .
$$

Definition (Kronheimer-Mrowka '10)

In the construction of the closure, suppose p is a point on T and the diffeomorphism h sends $\{1\} \times p$ to $\{-1\} \times p$. Let ω be the Hermitian line bundle such that $c_{1}(\omega)$ is Poincaré dual to $[-1,1] \times p / \sim_{h}$. For such a closure (Y, R, ω) with $g(R) \geqslant 1$, define

$$
S H I(M, \gamma)=I^{\omega}(Y \mid R) .
$$

Constructions of $S H M$ and $S H I$

Theorem (Kronheimer-Mrowka '10)

The isomorphism classes of $S H M(M, \gamma)$ and $S H I(M, \gamma)$ are independent of the choices of the surface T, the diffeomorphism h, and the point p.

Remark

Baldwin-Sivek '15 proved the naturality of $S H M(M, \gamma)$ and $S H I(M, \gamma)$.

Remark

$$
S H M\left(Y-\operatorname{int} B^{3}, \delta\right) \cong \widetilde{H M}(Y) \text { and } S H I\left(Y-\operatorname{int} B^{3}, \delta\right) \cong I^{\sharp}(Y)
$$

Define

$$
\begin{aligned}
K H M(Y, K) & =S H M(Y-\operatorname{int} N(K), m \cup(-m)), \\
K H I(Y, K) & =S H I(Y-\operatorname{int} N(K), m \cup(-m)) .
\end{aligned}
$$

Constructions of $S H M$ and $S H I$

For a basis S_{1}, \ldots, S_{n} of $H_{2}(M, \partial M)$, Li ' 19 , Ghosh-Li '19 constructed a \mathbb{Z}^{n}-grading on $\operatorname{SHM}(M, \gamma)$ and $\operatorname{SHI}(M, \gamma)$. Suppose

$$
\rho_{1}, \ldots, \rho_{n} \in H^{2}(H, \partial M) / \text { Tors }
$$

are the dual basis of S_{1}, \ldots, S_{n}. Define $\chi_{\mathrm{gr}}(S H M(M, \gamma))$ to be

$$
\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}^{n}} \chi\left(S H M\left(M, \gamma,\left(S_{1}, \ldots, S_{n}\right),\left(i_{1}, \ldots, i_{n}\right)\right)\right) \cdot\left(\rho_{1}^{i_{1}} \cdots \rho_{n}^{i_{n}}\right) .
$$

It is a well-defined element in $\mathbb{Z}[H] / \pm H$, where

$$
H=H_{1}(M) / \text { Tors } \cong H^{2}(M, \partial M) / \text { Tors }
$$

Define $\chi_{\mathrm{gr}}(S H I(M, \gamma))$ similarly.

Main theorem

Theorem A (Baldwin-Li-Y. '20)

Suppose (M, γ) is a balanced sutured manifold and \mathcal{H} is an (admissible) balanced diagram of (M, γ). Then we have

$$
\operatorname{dim}_{\mathbb{C}} S H I(M, \gamma) \leqslant \operatorname{dim}_{\mathbb{F}_{2}} S F C(\mathcal{H}) .
$$

Theorem B (Li-Y. '21)

Suppose (M, γ) is a balanced sutured manifold and $H=H_{1}(M ; \mathbb{Z}) /$ Tors. Then

$$
\chi_{\mathrm{gr}}(S H I(M, \gamma))=\chi_{\mathrm{gr}}(S F H(M, \gamma)) \in \mathbb{Z}[H] / \pm H .
$$

Remark

- Li-Y. '20 proved Theorem A for $(1,1)$ diagrams of knots in lens spaces.
- In preparation (Li-Y.): Theorem B can be proved for $H^{\prime}=H_{1}(M ; \mathbb{Z})$.

Table of Contents

(1) Construction of $S F H$
(2) Constructions of $S H M$ and $S H I$
(3) Motivation
4) Main theorem
(5) Sketch of proofs

Motivation

Conjecture (Kronheimer-Mrowka '10)

Suppose (M, γ) is a balanced sutured manifold and Λ is the Novikov ring over \mathbb{Z}_{2}.

$$
S H M(M, \gamma) \cong S F H(M, \gamma) \otimes \Lambda, S H I(M, \gamma) \cong S F H(M, \gamma) \otimes \mathbb{C} .
$$

Theorem (Lekili '13, Baldwin-Sivek '16)

The above conjecture holds for $S H M$.

Remark

The proof is based on the isomorphisms for closed 3-manifold Y

$$
\widetilde{H M} \cdot(Y) \cong E C H(-Y) \cong H F^{+}(Y)
$$

by Kutluhan-Lee-Taubes '12 or Colin-Ghiggini-Honda '12 and Taubes '10.

Motivation

Facts

- (Kronheimer-Mrowka '11) For a knot $K \subset S^{3}$, there is a spectral sequence from the reduced Khovanov homology $\operatorname{Khr}(\bar{K})$ to $\operatorname{KHI}\left(S^{3}, K\right)$, where \bar{K} is the mirror of K.
- (Lim '09, Kronheimer-Mrowka '10) For a link $L \subset S^{3}$, we have $\chi_{\mathrm{gr}}\left(K H I\left(S^{3}, K\right)\right)=\Delta_{L}(t)$, where $\Delta_{L}(t)$ is the (single-variable) Alexander polynomial of L.
- (Scaduto '15) For a link $L \subset S^{3}$, there is a spectral sqeuence from the reduced odd Khovanov homology $\operatorname{Khr}^{\prime}(\bar{L})$ to $I^{\sharp}(\Sigma(L))$, where $\Sigma(L)$ is the double branched cover of S^{3} over L.
- (Scaduto '15) For any closed 3-manifold Y, we have $\chi\left(I^{\sharp}(Y)\right)=\left|H_{1}(Y ; \mathbb{Z})\right|$.

Motivation

Facts

The conjecture $\operatorname{SHI}(M, \gamma) \cong S F H(M, \gamma) \otimes \mathbb{C}$ holds for

- S^{3}, lens spaces, $S^{1} \times S^{2}$, and other simple manifolds by direct calculations;
- alternating links in S^{3} (by spectral sequence and the alexander polynomial);
- double branched covers of S^{3} over alternating links L (similar as above);
- some torus knots (Lobb-Zentner '13, Kronheimer-Mrowka '14, Hedden-Herald-Kirk '14, Daemi-Scaduto '19, et al.)
- some closed 3-manifolds obtained by surgeries on knots in S^{3} (Lidman-Pinzón-Scaduto '20, Baldwin-Sivek '20, et al.).

Table of Contents

(1) Construction of $S F H$

(2) Constructions of $S H M$ and $S H I$

(3) Motivation
(4) Main theorem

(5) Sketch of proofs

Main theorem

Theorem A (Baldwin-Li-Y. '20)

Suppose (M, γ) is a balanced sutured manifold and \mathcal{H} is an (admissible) balanced diagram of (M, γ). Then we have

$$
\operatorname{dim}_{\mathbb{C}} S H I(M, \gamma) \leqslant \operatorname{dim}_{\mathbb{F}_{2}} S F C(\mathcal{H}) .
$$

Theorem B (Li-Y. '21)

Suppose (M, γ) is a balanced sutured manifold and $H=H_{1}(M ; \mathbb{Z}) /$ Tors. Then

$$
\chi_{\mathrm{gr}}(S H I(M, \gamma))=\chi_{\mathrm{gr}}(S F H(M, \gamma)) \in \mathbb{Z}[H] / \pm H .
$$

Remark

- Li-Y. '20 proved Theorem A for $(1,1)$ diagrams of knots in lens spaces.
- In preparation (Li-Y.): Theorem B can be proved for $H=H_{1}(M ; \mathbb{Z})$.

Main theorem

For a balanced diagram \mathcal{H}, the generator of $S F C(\mathcal{H})$ can be calculated \Longrightarrow Theorem A provides an upper bound on $\operatorname{dim}_{\mathbb{C}} S H I(M, \gamma)$.

For a balanced sutured manifold $(M, \gamma), \chi_{\mathrm{gr}}(S F H(M, \gamma))$ can be calculated by Fox calculus \Longrightarrow Theorem B provides a lower bound on $\operatorname{dim}_{\mathbb{C}} \operatorname{SHI}(M, \gamma)$.

When two bounds match, we have the following corollary.

Corollary

The conjecture $\operatorname{SHI}(M, \gamma) \cong S F H(M, \gamma) \otimes \mathbb{C}$ holds for

- (1,1)-knots in lens spaces whose Alexander polynomials determine $\widehat{H F K}$, in particular, all torus knots, constrained knots (introduced by Y. 20), and $(-2, p, q)$-pretzel knots for $p, q \in 2 \mathbb{N}+1$;
- strong L-space (introduced by Greene-Levine '16), for which there exists a balanced diagram \mathcal{H} such that $\operatorname{dim}_{\mathbb{F}_{2}} S F C(\mathcal{H})=\operatorname{dim}_{\mathbb{F}_{2}} S F H(M, \gamma)$.

Table of Contents

(1) Construction of $S F H$

(2) Constructions of $S H M$ and $S H I$
(3) Motivation
(4) Main theorem
(5) Sketch of proofs

Sketch of proofs: Theorem A

The proof of Theorem A is based on the following proposition.
Proposition A1 (Li-Y. '20 for one component, Baldwin-Li-Y. '20 for any case)
Suppose T is a properly embedded tangle in (M, γ) such that each component of T intersects each of $R_{+}(\gamma)$ and $R_{-}(\gamma)$ once. Suppose $M_{T}=M-\operatorname{int} N(T)$ and $\gamma_{T}=\gamma \cup m_{T}$, where m_{T} is the union of meridians of each component of T.
If $[T]=0 \in H_{1}(M, \partial M ; \mathbb{Z})$, then

$$
\operatorname{dim}_{\mathbb{C}} S H I(M, \gamma) \leqslant \operatorname{dim}_{\mathbb{C}} S H I\left(M_{T}, \gamma_{T}\right) .
$$

Remark

If $(M, \gamma)=\left(Y-\operatorname{int} B^{3}, S^{1}\right)$, then $\left(M_{T}, \gamma_{T}\right)=(Y-\operatorname{int} N(K), m \cup(-m))$ for some knot $K \subset Y$, where $[K]=0 \in H_{1}(Y ; \mathbb{Q})$. Then we have

$$
\operatorname{dim}_{\mathbb{C}} I^{\sharp}(Y) \leqslant \operatorname{dim}_{\mathbb{C}} K H I(Y, K) .
$$

Sketch of proofs: Theorem A

For a given (admissible) balanced diagram $\mathcal{H}=(\Sigma, \alpha, \beta)$ of (M, γ), we want to construct a tangle T satisfying the assumption of Proposition A1 and

$$
\operatorname{dim}_{\mathbb{C}} S H I\left(M_{T}, \gamma_{T}\right)=\operatorname{dim}_{\mathbb{F}_{2}} S F C(\mathcal{H})
$$

For simplicity, suppose $H_{1}(M, \partial M ; \mathbb{Q})=0$, then we always have $[T]=0$ and there is no admissible condition on \mathcal{H}.

Choose a point p_{i} in each component of $\Sigma \backslash \alpha \cup \beta$ that is disjoint from $\partial \Sigma$. Set

$$
T=\bigcup_{i}[-1,1] \times p_{i} \subset[-1,1] \times \Sigma \subset M .
$$

Sketch of proofs: Theorem A

Proposition A2 (Baldwin-Li-Y. '20)

Suppose $H_{1}(M, \partial M ; \mathbb{Q})=0$. For above choice of T, we have

$$
\operatorname{dim}_{\mathbb{C}} S H I\left(M_{T}, \gamma_{T}\right)=\operatorname{dim}_{\mathbb{F}_{2}} S F C(\mathcal{H})
$$

Proposition A3 (Baldwin-Li-Y. '20)

Suppose $D \subset M$ is a properly embedded disk with $|\partial D \cap \gamma|=4$. Then

$$
S H I(M, \gamma) \cong S H I\left(M^{\prime}, \gamma^{\prime}\right) \oplus S H I\left(M^{\prime \prime}, \gamma^{\prime \prime}\right),
$$

where $\left(M^{\prime}, \gamma^{\prime}\right)$ and $\left(M^{\prime \prime}, \gamma^{\prime \prime}\right)$ are the decompositions of (M, γ) along D and $-D$, respectively.

Sketch of proofs: Theorem A

Sketch of proofs: Theorem B

The proof of Theorem B is based on the following proposition.

Proposition B1 (Lekili '13, Baldwin-Sivek '16)

Suppose (Y, R) is a closure of (M, γ). Define

$$
S H F(M, \gamma)=H F(Y \mid R)=\bigoplus_{\substack{\mathfrak{s} \in \operatorname{Spin}^{c}(Y) \\\left\langle c_{1}(\mathfrak{s}), R\right\rangle=2 g(R)-2}} H F^{+}(Y, \mathfrak{s})
$$

where HF^{+}is the plus version of Heegaard Floer homology defined by Oszváth-Szabó '04. Then we have

$$
S H F(M, \gamma) \cong S F H(M, \gamma)
$$

Moreover, the isomorphism respects (nontorsion) spin ${ }^{c}$ structures and \mathbb{Z}_{2}-gradings.

Sketch of proofs: Theorem B

By Proposition B1, we only need to prove

$$
\chi_{\mathrm{gr}}(S H I(M, \gamma))=\chi_{\mathrm{gr}}(S H F(M, \gamma)),
$$

where both spaces are defined by closures. In particular, we can choose the same closure (Y, R) and the same surfaces S_{1}, \ldots, S_{n} to induce the \mathbb{Z}^{n}-grading. Suppose

$$
\cdots \rightarrow X \rightarrow Y \rightarrow Z \rightarrow X[1] \rightarrow \ldots
$$

is a long exact sequence, then there is a choice of signs such that

$$
\chi(X)= \pm \chi(Y) \pm \chi(Z)
$$

There are two long exact sequences we use, namely the surgery exact triangle and the bypass exact triangle.

Sketch of proofs: Theorem B

Proposition B2 (surgery exact triangle, Floer '90)

Suppose K is a knot in M. Let $\left(M_{i}, \gamma_{i}\right)$ be obtained from (M, γ) by Dehn surgery along K with slope μ_{i}. If

$$
\mu_{1} \cdot \mu_{2}=\mu_{2} \cdot \mu_{3}=\mu_{3} \cdot \mu_{1}=-1
$$

then there exists a long exact sequence
$\cdots \rightarrow \operatorname{SHI}\left(M_{1}, \gamma_{1}\right) \rightarrow \operatorname{SHI}\left(M_{2}, \gamma_{2}\right) \rightarrow \operatorname{SHI}\left(M_{3}, \gamma_{3}\right) \rightarrow \operatorname{SHI}\left(M_{1}, \gamma_{1}\right)[1] \rightarrow \cdots$

Sketch of proofs: Theorem B

Proposition B2 (bypass exact triangle, Baldwin-Sivek '18)

Suppose $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are three sutures on M such that γ_{i} are the same except in a disk, where they look like as follows. Then there exists a long exact sequence $\cdots \rightarrow \operatorname{SHI}\left(M, \gamma_{1}\right) \rightarrow \operatorname{SHI}\left(M, \gamma_{2}\right) \rightarrow \operatorname{SHI}\left(M, \gamma_{3}\right) \rightarrow \operatorname{SHI}\left(M, \gamma_{1}\right)[1] \rightarrow$

Sketch of proofs: Theorem B

Then we prove Theorem B by induction.

- The base case is $(M, \gamma)=\left(B^{3}, S^{1}\right)$, for which

$$
\operatorname{dim}_{\mathbb{C}} S H I(M, \gamma)=\operatorname{dim}_{\mathbb{F}_{2}} S H F(M, \gamma)=1 ;
$$

- In the case where M is a handlebody, we use the bypass exact triangle to make γ simper and then use the decomposition theorem (e.g. Proposition A3) to decrease the genus of the handlebody.
- In the general case, we use the surgery exact triangle to reduce (M, γ) to a sutured handlebody.

Dimension bounds on sutured instanton homology

Thanks for your attention.

